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Abstract

An efficient method is presented for multi-criteri-
on preliminary design and demonstrated for a tetra-
hedral truss platform. The present method requires
minimal analysis effort and permits rapid estimation
of optimized truss behavior for preliminary design. A
14m-diameter, 3-ring truss platform represents a
candidate reflector support structure for space-based
science spacecraft. The truss members are divided

into 9 groups by truss ring and position. Design vari-
ables are the cross-sectional area of all members in
a group, and are either 1,3 or 5 times the minimum
member area. Non-structural mass represents the
node and joint hardware used to assemble the truss

structure. Taguchi methods are used to efficiently
identify key points in the set of Pareto-optimal truss
designs. Key points identified using Taguchi meth-
ods are the maximum frequency, minimum mass, and
maximum frequency-to-mass ratio truss designs.
Low-order polynomial curve fits through these points
are used to approximate the behavior of the full set
of Pareto-optimal designs. The resulting Pareto-
optimal design curve is used to predict frequency and
mass for optimized trusses. Performance improve-
ments are plotted in frequency-mass (criterion) space
and compared to results for uniform trusses. Appli-
cation of constraints to frequency and mass and
sensitivity to constraint variation are demonstrated.

Introduction

Design of aerospace systems inevitably requires
simultaneous satisfaction of many different, and
usually conflicting, criteria. 1 Detailed information
about some configuration which meets the require-
ments is typically not required at a preliminary de-
sign level; instead, confirmation that an acceptable
design exists is sufficient. Various techniques have
been developed for solution of multi-criterion optimi-
zation problems. 2 In one common method, a single
scalar objective function is formed from the weight-
ed sum of the criteria of interest and used for optimi-
zation analyses. By varying the relative weights as-
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signed to each criterion, the set of Pareto-optimal
configurations may be found. 3 A configuration is
called a Pareto optimum if no improvement may be
made in one criterion without simultaneous degra-
dation of at least one of the other criteria. 4 In this
study, an efficient method is presented for predicting
the frequency and mass of Pareto-optimal designs
of a tetrahedral truss platform.

Several proposed Earth-science and deep-space
astrophysics spacecraft (fig. 1) require large, highly-
accurate truss platforms on the order of 10 meters in
diameter or larger 5 to support faceted reflector sur-
faces. A lattice truss, which has inherently high nat-
ural frequencies and low mass, is a likely candidate
for the primary mirror support structure. A 14m-di-
ameter, 3-ring tetrahedral truss platform, shown in
figure 2a, is representative of the reflector support
structures described previously. Previous design
studies of this structure 6 used natural frequency as
the sole optimization criterion. In the present study,
the criteria of interest are the natural frequency and
mass of the truss. Trusses which have been simul-

taneously optimized for high frequency and low mass
form the set of Pareto-optimal designs.

Figure 1. 20m-diameter high-precision reflector.



The 315 members in the truss are subdivided
into 9 member groups by ring number and relative
position in the truss. The cross-sectional area of all
members in any group are equal, and the set of
member areas for all groups are the design vari-
ables. Each design variable is either 1,3 or 5 times
the minimum area. Therefore, there are 39 or 19,683

possible truss configurations in the entire design
space. A search through design space for the set of
Pareto-optimal designs would be both tedious and
time-consuming. Instead, a simplified process is
presented here in which certain key designs from
the Pareto-optimal set are determined, and the be-
havior of the remaining Pareto-optimal designs is
inferred from the behavior of the key designs.

The three key designs chosen have maximum
frequency, minimum mass, and maximum frequen-
cy-to-mass ratio. Approximate solutions for these
designs are determined with Taguchi methods and
results are plotted in frequency-mass (criterion)
space. Behavior of the full set of Pareto-optimal
designs is approximated by low-order polynomial
curves which are fitted through the three key design
points in criterion space. Finally, a trade study is
performed to illustrate the use of the frequency-mass
relationship for the Pareto-optimal trusses in prelim-
inary design.

Truss Geometry and Finite Element Analysis

The tetrahedral truss configuration evaluated in
this study is comprised of 315 truss members, each
2 meters in length. A perspective view of the truss
platform and a repeating cell are shown in figure 2a.
The truss, which has a diameter of 14 meters across
corners and a depth of 1.63 meters, is shown sub-
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(a) Perspective view (b) Subdivided (c) Subdivided into

with unit cell into truss rings upper surface, core
and lower surface

Figure 2. 3-ring tetrahedral truss platform.
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Figure 3. 3-ring truss member groups.

divided into 3 circumferential truss rings in figure 2b,
and partitioned into upper surface, core, and lower
surfaces in figure 2c. The truss subdivisions in fig-
ures 2b and 2c are used to define the 9 member
groups shown in figure 3. All of the members in a
given group have the same cross-sectional area;
the design variables for this problem are the cross-
sectional areas associated with each member group.

A commercial finite element code 7 is used to

construct a linear analysis model which has pinned-
end axial stiffness elements.The truss members are
assumed to be comprised of a composite tube with
a fixed outer diameter of 3.18 x 10-2 meters, and a

joint at each end which attaches to a truss node. The
minimum cross-sectional area of the truss mem-
bers is 6.45 x 10-5 m2, which is assumed to be

sufficient to satisfy minimum gage and member buck-
ling requirements. The truss members are assumed
to have an elastic modulus of 1.23 x 1011 Pa and
mass density of 1348 kg/m 3, nominal properties for
a high-performance graphite-epoxy material. Non-
structural mass is included to represent the node
and joint hardware used to assemble the truss struc-
ture. Each truss node is represented by a 0.39 kg
point mass and each truss joint is represented by a
0.21 kg point mass. A total of 162.41 kg of non-
structural mass is distributed among the 84 truss
nodes. An eigenvalue analysis is performed to com-
pute the lowest flexible-body frequency of the truss
with free-free boundary conditions. The mode shape
associated with the fundamental frequency is asym-
metric, anticlastic bending of the truss. 6

Optimization Criteria

A high truss natural frequency, f, is typically de-
sirable to maintain adequate separation between
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structuralandattitudecontrolsystem frequencies.
Also, high natural frequencies result in lower dy-
namic amplitudes and faster damping of transient
disturbances, so stringent spacecraft pointing and
surface accuracy requirements for science missions
may be met. Thus, it is particularly important to
maintain high natural frequency for trusses used in
precision reflectors, where the panel support struc-
ture must be both stiff and accurate. 8

The truss mass, m, is another criterion for struc-
tural optimization problems. Low mass is necessary
because of the extremely high cost of transportation
to orbit, with launch costs for current systems on the
order of 10,000 dollars per kilogram. 9 In addition,
high masses are often reflected in higher costs for
additional material, fabrication and processing. In
this study, both frequency and mass are optimiza-
tion criteria used in determining the Pareto-optimal

designs.

Pareto-Optimal Design Curve

In this section, characteristics and construction
of a Pareto-optimal design curve are discussed for
optimization criteria of frequency and mass. The
Pareto-optimal design curve is used to approximate
the behavior of the actual set of Pareto-optimal

designs in criterion space. As the design parame-
ters are varied, the frequency and mass of the struc-
ture are assumed to vary within certain limits. These
limits can be graphically determined by plotting fre-
quency and mass for all possible designs. The shad-
ed region in the criterion space plot of figure 4 rep-
resents such a plot of all possible configurations for
a given design problem. Since designs which com-
bine high frequency and low mass are desired, the
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Figure 4. Criterion-space plot of feasible designs
and Par, to-optimal boundary.

upper left-hand boundary of this region of feasible
designs is identified as the Pareto-optimal bound°
ary, and is shown in the figure as a dark solid line.
Thus, the Pareto-optimal design curve is an approx-
imation to this maximum-frequency, minimum-mass
boundary of the region of feasible designs. Any
deviation from this boundary into the region of fea-
sible designs will result in a decrease in frequency,
an increase in mass, or both.

Three key points, the maximum frequency de-
sign, the minimum mass design, and the maximum
frequency-to-mass ratio design, are identified on
the Pareto-optimal boundary in figure 4. The maxi-
mum frequency design and the minimum mass
design are important because they are the end points
of the Pareto-optimal boundary. The maximum fre-
quency design is the upper limit of the Pareto-opti-
mal boundary, and the slope through this point must
be zero (no feasible designs exist above this point).
Similarly, the minimum mass design defines the left-
hand limit of the Pareto-optimal boundary, and the
slope through this point must be infinite (no designs
exist to the left of this point). Finally, the upper, left-
hand limit for the Pareto-optimal boundary is as-
sumed to be a line through the origin and the max-
imum frequency-to-mass ratio design. Thus, the
slope through the maximum frequency-to-mass ra-
tio design point is equal to (f - 0)/(m - 0), or f/m.

A simple, conservative approximation ofthe Pare-
to-optimal boundary consists of the three bounding
lines described previously. This piecewise linear
design curve is shown in figure 4 as a dark dashed
line. Less conservative approximations of the de-
sign curve can be constructed from low-order poly-
nomial curve fits through the key points and their
slopes described previously. The accuracy of such
curve fits depends on the behavior of the actual
Pareto-optimal boundary, which is assumed to be
both smooth and continuous in this study.

Computation of Key Truss Designs

To determine the Pareto-optimal design curve
for the truss example, Taguchi methods 10 are used
to identifythe maximum frequency, minimum mass,
and maximum frequency-to-mass ratio truss de-
signs. Taguchi methods are an unconstrained opti-
mization technique which use an orthogonal array
from design-of-experiments theory to reduce the
computational effort necessary to locate optimized
truss designs. An array with 27 rows, shown in table
1, is selected using the program of reference 11. In



any pair of columns of an orthogonal array, every

possible combination of array elements occurs, and
occurs an equal number of times. Also, if the array

elements 1, 3 and 5 are replaced by -1,0 and +1,

then each column is linearly independent from ev-

ery other column, with a scalar product of zero.

The design variables, which are the cross-sec-
tional areas of the 9 member groups in figure 3, are

assigned to the 9 columns of the orthogonal array in
table 1. Allowable values for the design variables

are 1,3 and 5 times the minimum area of 6.45 x 10 -5

m 2. Thus, the array elements in table I are defined
as the normalized member area A, orthe ratio of the

member area to the minimum area, where A = 1,3

or 5. Truss configurations are presented in the form

(123 456 789), where each value in parentheses is
the normalized area for member groups 1 through 9.

If every possible combination of design variables
and areas were run, 39 or 19,683 analyses, collec-

tivelytermed the"full-factorial" set, would be required.

In the present application of Taguchi methods, only

27 analyses are required to determine an optimized

truss configuration. Note that each of the 19,683
combinations is assumed to be a feasible design

since the optimization method is unconstrained.
Thus, the values of the design variables must be

selected with manufacturing and logistical consid-

erations in mind. For example, use of a composite

material for the truss members restricts the area to

discrete values due to the integer number of lamina

in the tube wall.

Each row of the array in table 1 represents an

analysis case which must be performed. In each

case, the design variables are set to the values in-

dicated in the row of the orthogonal array, and the

frequency, mass and frequency-to-mass ratio are

computed using the vibrational analysis described

previously. The values of these objective functions
are shown in table 1 for each of the 27 cases. For

example, the truss configuration in analysis case 25
has normalized areas of (551 513 135), and fre-

quency, mass, and frequency-to-mass ratio of 44.20

Table 1: Orthogonal array and structural analysis results for Taguchi analysis

Normalized area A for truss member group f, Hz m, kg f/m, Hz/kg
Case 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 29.93 217.20 0.1378
2 1 1 3 5 5 5 5 5 5 39.94 404.01 0.0989

3 1 1 5 3 3 3 3 3 3 38.13 315.30 0.1209

4 1 3 1 5 5 5 3 3 3 39.61 351.83 0.1126

5 1 3 3 3 3 3 1 1 1 36.19 263.12 0.1375

6 1 3 5 1 1 1 5 5 5 31.36 340.35 0.0921
7 1 5 1 3 3 3 5 5 5 36.84 376.87 0.0978

8 1 5 3 1 1 1 3 3 3 32.03 288.16 0.1112
9 1 5 5 5 5 5 1 1 1 38.20 309.04 0.1236

10 3 1 1 5 3 1 5 3 1 31.58 323.65 0.0976

11 3 1 3 3 1 5 3 1 5 39.31 316.34 0.1243

12 3 1 5 1 5 3 1 5 3 38.39 321.56 0.1194

13 3 3 1 3 1 5 1 5 3 42.72 320.52 0.1333

14 3 3 3 1 5 3 5 3 1 34.92 328.87 0.1062

15 3 3 5 5 3 1 3 1 5 36.97 330.95 0.1117

16 3 5 1 1 5 3 3 1 5 35.46 326.78 0.1085

17 3 5 3 5 3 1 1 5 3 40.00 335.13 0.1194

18 3 5 5 3 1 5 5 3 1 38.74 337.21 0.1149

19 5 1 1 3 5 1 3 5 1 32.48 329.91 0.0985

20 5 1 3 1 3 5 1 3 5 41.58 322.60 0.1289

21 5 1 5 5 1 3 5 1 3 39.06 334.08 0.1169

22 5 3 1 1 3 5 5 1 3 36.67 329.91 0.1112

23 5 3 3 5 1 3 3 5 1 39.71 338.26 0.1174

24 5 3 5 3 5 1 1 3 5 41.16 337.21 0.1221

25 5 5 1 5 1 3 1 3 5 44.20 336.17 0.1315

26 5 5 3 3 5 1 5 1 3 35.09 344.52 0.1019

27 5 5 5 1 3 5 3 5 1 39.50 343.48 0.1150
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Table 2: Predicted optimal truss configurations

Table 2a: Average frequency, Hz

Truss member group
A 1 2 3 4 5 6 7 8 9

1 35.80 36.71 36.61 35.54 37.45 34.51 39.15 36.32 35.69

3 37.56 37.70 37.64 37.85 37.49 38.10 37.02 37.99 37.97

5 38.83 37.78 37.94 38.81 37.25 39.59 36.02 37.88 38.53

Table 2b: Average mass, kg

Truss member group
A 1 2 3 4 5 6 7 8 9

1 318.43 320.52 323.65 313.21 314.25 316.34 306.95 307.99 310.08
3 326.78 326.78 326.78 326.78 326.78 326.78 326.78 326.78 326.78

5 335.13 333.04 329.91 340.35 339.30 337.22 346.61 345.57 343.48

Table 2c: Average frequency-to-mass ratio, Hz/kg

Truss member group
A

1 2 3 4 5 6 7 8 9

1 0.1147 0.1159 0.1143 0.1145 0.1199 0.1102 0.1282 0.1193 0.1165

3 0.1150 0.1160 0.1162 0.1168 0.1155 0.1173 0.1133 0.1162 0.1163

5 0.1159 0.1137 0.1152 0.1144 0.1102 0.1181 0.1041 0.1102 0.1128

Hz, 336.17 kg, and 0.1315 Hz/kg. The frequency,
mass, and frequency-to-mass ratio data from table

1 are reduced into tables 2a, 2b, and 2c. Each table

entry is the average of the objective function values

for a given design variable (1 to 9) at a given value

(1,3 or 5). For example, the 35.80 Hz average fre-

quency from table 2a for member group 1 and nor-

malized area 1 is the average of the computed fre-

quencies for all cases in which member group 1 is

assigned a normalized area of 1 (cases 1 through 9

from table 1).

The optimized truss design is determined by set-

ting the cross-sectional area of each of the 9 design
variables to the value (1,3 or 5) which yields the best

results (shown in boldface in table 2) of the three

allowable values. Thus, for the maximum frequency

truss design, member group 1 will have a normalized

member area of 5, since the corresponding average

frequency of 38.83 Hz from table 2a is higher than

the other frequencies in that column. The predicted
maximum frequency truss configuration, shown in

table 2a, has normalized member areas of (555 535

135). This design resembles a tapered plate, where
the thickness at the perimeter is less than the thick-

ness in the center. The minimum-mass truss config-

uration, shown in table 2b, is one where every mem-

ber group has the lowest possible normalized area

of 1. Since the mass of a member is proportional to

its area, this result makes physical sense. The pre-

dicted truss configuration with the maximum frequen-

cy-to-mass ratio, shown in table 2c, has normalized

areas of (533 315 111). This truss is similar to a

tapered honeycomb sandwich, with stiff face sheets

in truss rings I and 2, minimum-mass face sheets in

ring 3 and a low-mass core throughout.

Table 3: Optimized and uniform truss performance

Description

Baseline uniform, A=3

Maximum frequency

percent from baseline

Minimum mass, A=I

percent from baseline

Maximum frequency-to-mass ratio

percent from baseline
Uniform, A=5

Configuration f, Hz m, kg f/m, Hz/kg
333 333 333 42.96 326.78 0.1315
555 535 135 50.73 365.39 0.1388

+18.07 +11.82 +5.55

111 111 111 29.93 217.20 0.1378

-30.33 -33.53 +4.80

533 315 111 42.77 277.73 0.1540

-0.45 -15.01 +17.11

555 555 555 48.40 436.36 0.1109



The actual performance of each optimized con-
figuration is determined from a vibrational analysis
where the design variables are set to their predicted
values in table 2. For example, finite element anal-
ysis of the maximum frequency configuration shows
that this design has a fundamental frequency of 50.73
Hz and a mass of 365.39 kg. The three optimized
truss configurations are compared to the baseline
design (where every member group has a normal-
ized area of 3) in table 3. Also shown in table 3 are
results for the uniform truss where every member
has the maximum normalized area of 5. The data
from table 3 are plotted in criterion space in figure 5.
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Figure 5. Design curves for Pareto-optimal and
uniform trusses.

Computation of Pareto-Optimal Design Curve

Low-order polynomial curve fits are made to the
optimized truss configurations in table 3 to deter-
mine the Pareto-optimal design curve. The slope
constraints discussed previously (zero slope at the
maximum frequency design, infinite slope at the
minimum mass design, and slope f/m at the maxi-
mum frequency-to-mass ratio design) are applied
by differentiation of the polynomial equations. A third-
order polynomial with the general form

f-- o_+ _m + l_n2 + 5m3 (1)

is chosen to represent the design cu rye between the
maximum frequency and maximum frequency-to-
mass ratio designs in criterion space. An equation
for the slope in this region is given by differentiation
of equation 1 with respect to m, resulting in

df/dm = 0 + 83+ 27rn + 35m 2 (2)

To determine the unknown polynomial coeffi-
cients _, 13,7, and 8, a matrix equation

m m 2 m 3

1 2m 3m 2

1 2m 3m 2 ]

=

Y

8

f ] (max. f/m design)

f=fmax _ (max. fdesign)

df/dm = f/m / (slope at max. f/m)

df/dm = 0 J (slope at max. f)

(3)

is assembled and evaluated with the program of
reference 12. The rows of equation 3 correspond to
the maximum frequency-to-mass ratio and maxi-
mum frequency truss designs and their slopes. Since
there are four unknown coefficients, an exact cubic
fit is made through the two points in criterion space.
Substitution of the appropriate values from table 3
and solution of equation 3 gives

f = 45.6626 - 0.4520m + 0.002588m 2
- 0.000003593m 3 (4)

Because the slope at the minimum mass design
is infinite, equation 1 cannot be used for the design
curve between the minimum mass and maximum
frequency-to-mass ratio designs. However, the re-
ciprocal dm/df of the slope is zero, which means that
an equation of the form

m = E + _f + qf2 + 0f3 (5)

can be used to approximate the design curve be-
tween the minimum mass and maximum frequency-
to-mass ratio designs. Equation 5 is solved for the
polynomial coefficients E, 4, q, and 0 as described
previously, resulting in an equation

m = 1228.1303- 83.4996f + 2.1941f 2
- 0.01780f 3 (6)

between the minimum mass and maximum frequen-
cy-to-mass ratio designs. The third-order curves
(defined by equations 4 and 6) are shown in the plot
of figure 5. This pair of curves is used to predict the
trade-off between frequency and mass for the Pare-
to-optimal truss designs.

Verification of Pareto-Optimal Design Curve

To determine the accuracy of the Pareto-optimal
design curve, frequency and mass were computed
for the 19,683 full-factorial cases. Criterion space
results of the full-factorial analyses are shown with
the design curve in figure 6. Although the design
curve shown is not the actual boundary for the full-
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Table 4: Predicted and global optimized trusses

Criterion
Maximum frequency

Predicted
Global
Percent error

Minimum mass
Predicted
Global
Percent error

Maximum frequency-to-mass ratio
Predicted
Global
Percent error

Configuration

555 535 135
555 555 133

111 111 111
111 111 111

533 315 111
515 335 111

f, Hz m, kg f/m, Hz/kg

50.73 365.39 0.1388
51.19 361.22 0.1417
+0.90 -1.15 +2.05

29.93 217.20 0.1378
29.93 217.20 0.1378
0.00 0.00 0.00

42.77 277.73 0.1540
46.23 287.12 0.1610
+7.48 +3.27 +4.35

factorial data, the majority of the data are bounded
by the cubic curve fits from equations 4 and 6. The
trusses which have the highest frequency, lowest
mass and highest frequency-to-mass ratio of the
19,683 full-factorial configurations were extracted
and are compared to corresponding results from the
Taguchi analysis in table 4. Agreement between
results for the Taguchi and full-factorial analyses is
excellent for the maximum frequency and minimum
mass trusses. Results for the maximum frequency-
to-mass ratio trusses show an error of under 5 per-
cent in the frequency-to-mass ratio.

Two key assumptions are necessary for the de-
sign method in this study to be valid. The first as-
sumption is that a low-order polynomial is sufficient
to define the Pareto-optimal design curve. Exami-
nation of figure 6 shows that, forthis problem, a cubic
polynomial curve provides a reasonable upper bound
to the full-factorial data. However, this is not true for

every design problem. The present method is appli-
cable to two of the three analysis cases in reference
3, which have smooth, continuous Pareto-optimal
boundaries. The boundary of the third case in refer-
ence 3 is highly discontinuous, and the present
method would not provide a good approximation of
the boundary. The second assumption is that every
point on the Pareto-optimal design curve has a cor-
responding feasible design. Although this assump-
tion may be true when the design variables vary
continuously between limits (as in calculus-based
optimization), it is not the case in this example, where
the design variables take on only discrete values.
Thus, not every point on the design curve in figure
6 has an associated configuration in the full-factorial
data; however, many feasible designs are very close
to the design curve. Note that the design curve
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Figure 6. Full-factorial data and Pareto-
optimal design curve.

bounds the region of feasible designs, but does not
tell the designer what the values of the design vari-
ables are for trusses along that boundary.

Multi-Criterion Preliminary Design of a
Truss Platform

The first step in preliminary design is to deter-
mine the performance improvements that can be
achieved through optimization. Such estimates can
be made by comparison of the uniform truss perfor-
mance to that of the Pareto-optimal structures pre-
dicted by equations 4 and 6. To provide a design
curve for uniform trusses, a second-order curve fit
(equation 1 with 5 = 0) is made to the uniform truss
frequency and mass data from table 3. This curve fit
is exact since there are three uniform truss designs
(A = 1,3 and 5) and three unknowns. Solution for the
polynomial coefficients gives

f = -18.3359 + 0.2909m - 0.0003162m 2 (7)



Theuniformtrussdesigncurvefromequation7 is
plottedinfigure5withthe Pareto-optimal design curve.
Note that a semi-empirical equation for uniform truss
frequency is presented in reference 6, which may be
used instead of equation 7. The (111 111 111)config-
uration is common to both the uniform and Pareto-

optimal design curves, since it is both a uniform truss
with A = 1 and the minimum mass design.

With the exception of the minimum mass truss de-
sign, there are significant differences between the
behavior of the Pareto-optimal and uniform truss de-
sign curves. In general, the performance gains from
optimization will depend on additional constraints which
may be imposed on the design. For illustrative purpos-
es, two constraint values, a 40 Hz lower limit on fre-
quency and a 300 kg upper limit on mass, are selected
for this problem and shown infigure 7. Computation of
frequency and mass for these constraints using equa-
tions 4 and 6 shows that use of an optimized truss will
increase the truss frequency by 5.49 Hz (13.56 per-
cent) over a uniform truss of equal mass, and an op-
timized truss will reduce the truss mass by 40.17 kg
(13.60 percent) over a uniform truss with equal fre-
quency. The shaded region labeled ffeasible designs"
in figure 7 contains all truss designs which satisfy the
frequency and mass constraints and are bounded by
the Pareto-optimal and uniform truss design curves.
Note that none of the three uniform trusses which were
analyzed satisfies the constraints, but other uniform
trusses (possibly with non-integer normalized areas)
may be located which do satisfy the constraints.

In preliminary design problems, the constraint val-
ues are often ill-defined, but nominal values must still
be used for trade studies and performance estimates.
The Pareto-optimal design curve may be used to pre-
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Figure 7. Pareto-optimal and uniform design
curves with constraints.

dict the sensitivity of one criterion to variationinanoth-
er criterion. For example, if the uncertainty in the mass
constraint is +5 percent (300 kg + 15 kg), then equation
4 may be used to determine the resulting frequency
variation from the nominal 45.97 Hz frequency. For a
5 percent reduction in the mass constraint (to 285 kg),
the frequency is reduced by 4.55 percent (to 43.88
Hz). An increase of 5 percent in the truss mass (to 315
kg) results in an increase in frequency of 3.92 percent
(to 47.77 Hz). These results are shown graphically in
figure 8.
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Figure 8. Frequency sensitivity for mass
constraint variation.

One further aspect of multi-criterion preliminary de-
sign must still be addressed: selection of a nominal
design. That is, of the feasible designs in figure 7,
which one should be chosen for later studies? To
answer this question, two additional considerations
must be examined. First, the criteria must be priori-
tized in terms of their relative importance. In this truss
design problem, is highfrequency more important than
low mass, or vice versa? Selection of one overriding
criterion implies that the other criterion (or criteria) can
be treated as a constraint. The original multi-criterion
problem now resembles atypical single-criterion prob-
lem, where one criterion is considered dominant, and
allother considerations are handled with constraints in
the optimization. The difference lies in the fact that in
the present method, the constraints are not imposed
until after the Pareto-optimal designs are located in
criterion space, instead of being imposed during opti-
mization. The second consideration requires estima-
tion of the constraint variations from experience or
historical data. For example, is 5 percent growth in the
300 kg mass constraint likely, or is 10 percent a more
realistic value? What is the resulting variation in fre-
quency? What is the expected variation in the 40 Hz
frequency constraint, and the associated mass varia-
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tion? Selection of a design whose behavior is least
sensitive to variations in the constraints would be most

prudent.

Concluding Remarks

An efficient method is presented here for multi-

criterion preliminary design, and demonstrated for a

14m-diameter, 3-ring tetrahedral truss platform. This

method permits rapid estimates of the truss natural

frequency and mass, the criteria of interest, to be made

during preliminary design studies. The method is based

on construction of an Pareto-optimal design curve,

generated from only 31 analyses (27 cases from the

orthogonal array, verification of 2 optimized designs

and 2 uniform trusses), out of a possible 19,683 de-

signs. The multi-criterion design method presented
here does not depend on which optimization tech-

nique is used to generate the optimal frequency, mass

and frequency-to-mass ratio truss designs, however

Taguchi methods are both accurate and efficient for

this problem. The full-factorial data are used to dem-

onstrate the validity of assumptions made on the na-

ture of the Pareto-optimal boundary.

The present method does not identify what specific

combination of design variables will retum the values
of the criteria. Instead, the method indicates that a

configuration which satisfies the given constraints may
exist, which is probably more important during a pre-

liminary design phase than details of a specific config-
uration. The ability to estimate criterion sensitivity to

variation of constraints is very important in preliminary

design problems, when constraint values are often ill-

defined and may also change rapidly. Extension of this

method to include additional criteria, such as cost,

should be fairly straightforward, but physical insight

may be lost for problems which have more than three
criteria. The method discussed here has been suc-

cessfully applied to optimal design of a truss platform

for maximum frequency and minimum mass, and may

also be applicable to other design problems where

conflicting criteria must be satisfied.
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